# 3/CHE-200 Syllabus-2023

### 2024

(December)

## **FYUP: 3rd Semester Examination**

**MAJOR** 

### **CHEMISTRY**

(Chemistry—III)

CHE-200

*Marks*: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

#### PART—A

(Inorganic)

( Marks: 38 )

- 1. (a) Explain the anomalous behaviour of lithium from other member of its group. 2
  - (b) Why are Be and Mg show similar physical and chemical properties?

    Explain giving reason for your answer. 2

D25/929

(Turn Over)

| (c)             | Write down one method of preparation                                                                  |     |   |      | OR                                  |                                                                                                                      |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------|-----|---|------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
|                 | and one use of the following compounds                                                                | 2=4 |   | 2.   | (a)                                 | How is boric acid prepared? Mention one use of boric acid. 1+1=2                                                     |  |  |
|                 | (ii) Aluminium chloride                                                                               |     |   |      | (b)                                 | Giving balance equation, write what happens, when—                                                                   |  |  |
| (d)             | Define ionization enthalpy. What are the factors on which ionization enthalpy depends?                | 2   |   |      |                                     | (i) $I_2$ solution reacts with sodium thiosulphate;                                                                  |  |  |
|                 | •                                                                                                     |     |   |      |                                     | (ii) hydrazine reacts with AuCl <sub>3</sub> ;                                                                       |  |  |
| (e)             | What is catenation? Bond energies of catenated elements are as follows:                               |     |   |      |                                     | (iii) hydrazoic acid is reacted with (CN) <sub>2</sub> .  1+1+1=3                                                    |  |  |
| C-              | -C 348 kJ mole <sup>-1</sup> , Si-Si 222 kJ mole <sup>-1</sup>                                        |     |   |      |                                     |                                                                                                                      |  |  |
|                 | and Ge—Ge 167 kJ mole <sup>-1</sup>                                                                   |     |   | (c)  | What is meant by inert pair effect? |                                                                                                                      |  |  |
|                 | Which elements would you expect t show maximum catenation and why?                                    | 2   | 1 |      |                                     | Explain taking suitable examples.                                                                                    |  |  |
| Ø               | What are pseudohalogens? Give an example.                                                             | 2   |   |      | (d)                                 | What are the different oxidation states exhibited by group 17 elements of the periodic table? Explain the variation. |  |  |
|                 | example.                                                                                              | 2   |   |      |                                     |                                                                                                                      |  |  |
| <i>(g)</i>      | Explain why interhalogen compounds are more reactive than the halogens.  Give example of interhalogen |     |   |      | (e)                                 | The dissociation energy of $F_2$ molecule is lesser than the dissociation energy of $Cl_2$ molecule. Explain.        |  |  |
|                 | compounds.                                                                                            | 3   |   |      | (f)                                 | Taking suitable examples comment on                                                                                  |  |  |
| (h)             | Draw the structures of $BrF_3$ and $IF_7$ .<br>1+1=                                                   |     |   |      |                                     | the reactivity of polyhalides and pseudo-<br>halides.                                                                |  |  |
| D25 <b>/929</b> | ( Continue                                                                                            | ed) |   | D25/ | 929                                 | (Turn Over                                                                                                           |  |  |

|    | (g) | Write one method of preparation of BrF <sub>5</sub> and draw its structure.                                                                               | 1=2 | (e)           | Describe the preparation and uses of the following : $1\frac{1}{2}\times2^{=}$                                                                    | =3 |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | (h) | What happens when mercuric cyanide is thermally decomposed? Write the                                                                                     |     |               | <ul><li>(i) Nesslers' reagent</li><li>(ii) Potassium permanganate</li></ul>                                                                       |    |
|    |     | reactions.                                                                                                                                                | 1   | Ø             | Draw the structure of nickel tetra-<br>carbonyl.                                                                                                  | 1  |
|    | (i) | Give two similarities between halogens and pseudohalogens.                                                                                                | 2   | (g)           | Draw the MOT energy level diagram. Calculate the bond order and mention the magnetic properties of $N_2^+$ molecule                               | 3  |
| 3. | (a) | Explain, giving reason for your answer, why most of the <i>d</i> -block elements can act as a catalyst.                                                   | 2   | (h)           | and $N_2^{2-}$ molecule.  Write the main postulate of molecular orbital theory of covalent bonding.                                               | 2  |
|    | (b) | Write the electronic configurations of chromium and copper.  (At. Nos. : Cr = 24, Cu = 29)                                                                | 1   | (i)           | Draw the pi-bonding and anti-bonding molecular orbitals. Obtain by linear combination of $p_x$ - $p_x$ orbitals.                                  | 2  |
|    | (c) | Fe is most stable in its +3 oxidation state than its +2 oxidation state, while Mn is stable in its +2 oxidation state rather than its +3 oxidation state. |     | <b>4.</b> (a) | Write one method of preparation of sodium cobaltinitrite and draw its structure.                                                                  | 2  |
|    | (đ) | Explain. (At. Nos.: Fe = 26, Mn = 25)  What is lanthanide contraction? Explain the causes and consequences of                                             | 2   | (b)           | What are transition elements? Giving their valence shell electronic configuration, justify why Zn and Hg are not usually considered as transition |    |
|    |     | lanthanide contraction.                                                                                                                                   | 3   |               | element.                                                                                                                                          | :  |

| (c) | Write         | the  | ge | eneral      | elect | electronic |  |
|-----|---------------|------|----|-------------|-------|------------|--|
|     | configuration |      | of | lanthanides |       | and        |  |
|     | actinide      | s. · |    |             |       |            |  |

ı**d** 2

(d) Discuss the variation in oxidation state for the first, second and third row transition metals.

2

(e) Give reason for the following observations:

3

1

2

2

3

- (i) Compounds of transition elements are coloured
- (ii) Transition elements are good catalyst
- (f) Mention one method of preparation of UF<sub>6</sub>.
- (g) Write down the molecular orbital configurations of O<sub>2</sub><sup>+</sup>, O<sub>2</sub>, O<sub>2</sub><sup>-</sup>, O<sub>2</sub><sup>2-</sup>.
- (h) Draw the molecular orbital energy level diagram for Cl<sub>2</sub> molecule.
- (i) What happens to the bond length when an electron is removed from—
  - (i) N<sub>2</sub> molecule;
  - (ii) O<sub>2</sub> molecule;
  - (iii) Cl<sub>2</sub> molecule.

PART—B

(Physical)

( Marks: 37)

5. (a) Which of the following are polynomials?
In case of a polynomial, write down its
degree and leading coefficient:

$$f(x) = 4x^{2} + 2$$

$$f(x) = 3x^{2} - 2x + \sqrt{x}$$

$$f(x) = 12 - 4x^{5} + 3x^{2}$$

- (b) Draw the graph of the function 3y = -3x + 12 and find the intercept and slope of the line.
- (c) Find the derivatives of the following:  $1.4 \times 2 = 3$

(i) 
$$x^3 + 2x$$

(ii) 
$$e^{x^2} + 5$$

(d) A card is drawn from a well-shuffled pack of 52 cards. What is the probability of getting a king of heart or a queen of club?

3

3

- (e) Find the roots of the following quadratic equations:
  - (i)  $x^2 5 = 4x$
  - (ii)  $4x^2 + 9 = 12x$
- (f) Use Stirling approximation to estimate ln10!.

#### OR

**6.** (a) Calculate the maximum value for the following function at x = 1:

$$y = x^3 - x$$

- (b) Integrate the following: 2×2=4
  - (i)  $x^3$  (within the limit x = 2 to x = 4)
  - (ii)  $\frac{1}{5^x}$  (within the limit x = 0 to x = 5)
- (c) Convert the following exponential equation into its linear form: 2  $A = B \cdot e^{-E/RT}$
- (d) Given 3 distinguishable particles and 2 compartments, calculate  ${}^{n}P_{r}$  and  ${}^{n}C_{r}$ .

3½

4

2

3

(Continued)

(e) If

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & -1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$$

then find 2A - B.

Find out the magnitude of the vector  $6\hat{i} + 2\hat{i} + 3\hat{k}$ .

7. (a) Derive the mathematical relationship between the equilibrium constants  $K_p$ 

the significance of  $\Delta_n$ .

(b) What is Le-Chatelier's principle? Explain giving examples.

and Kc for a gaseous reaction. Explain

- (c) Calculate the degree of hydrolysis of 0·10 molar solution of sodium acetate at 25 °C.  $K_a = 1.8 \times 10^{-5}$  and  $K_w = 1 \times 10^{-14}$ .
- (d) Explain solubility product of a salt in an aqueous medium.

(Turn Over)

31/2

2

5

2

Derive hydrolysis? What (e) expression for the hydrolysis of a salt of a weak acid and strong base in terms of dissociation constant of weak acid and ionic product of water.

Calculate the pH of the following:

OR

 $2 \times 2 = 4$ (i)  $10^{-8}$  (N) aqueous solution of HCl (ii)  $10^{-7}$  (N) aqueous solution of NaOH

equation van't Hoff Deduce (a) temperature dependance of equilibrium constant in terms of  $K_p$  and  $K_c$ .

Why is CuSO<sub>4</sub> acidic when dissolved in water and that of NaCl is neutral?

State and explain the law of mass action.

The value of  $K_p$  for the water-gas reaction

 $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$ 

is  $1.06 \times 10^5$  at 25 °C. Calculate  $\Delta G^{\circ}$  for this reaction.  $(R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1})$ 

3

4

4

2

Derive Henderson's equation for the determination of pH of a buffer solution. 4

D25/929

(Continued)

2